
1

RETROHACK

TECHNICAL INFORMATION

TABLE OF CONTENTS

OVERVIEW......................................2
THE BLITTER...................................3
READING INPUT................................11
THE SOUND GENERATOR..........................13
ADDITIONAL ROUTINES..........................15

2

OVERVIEW

The RetroHack machine is composed of three
principal parts — the CPU, the blitter and the
sound generator.

The CPU is used for all logic calculations
and for controlling the blitter and the sound
generator.

The blitter is the CPU’s interface to all video
functions. It has access to two framebuffers
with hardware page flipping and 64 kB of sprite
memory. It can transfer graphics from sprite
memory to the framebuffer through a highly
flexible blitting operation.

The sound generator is an industry-standard
AY-3-8910 and offers three tone generators,
a noise generator and 16 different sound
envelopes.

CPU Blitter

Sprite
memory

Framebuffers
Sound

generator

Figure 1: hardware overview

3

THE BLITTER

All drawing operations are performed by the
blitter. It has three primary functions:

• Transferring graphics from the CPU to
sprite memory

• High speed blitting of graphics from
sprite memory to the frame buffer

• Flipping the frame buffers for smooth
animation

THE FRAMEBUFFER
The RetroHack machine has a 320×240 pixel,
256 colour framebuffer which stores colours in
the YCbCr colour space. Four bits are allocated
to storage of Y, and two bits each to Cb and Cr.

Y Cb Cr

Total: 8 bits

Figure 2: framebuffer format

SPRITE MEMORY
Graphics are stored in sprite memory for later
transfer to the framebuffer by the blitter. The
CPU has no direct access to sprite memory, but
can instruct the blitter to move data there.

Images are stored in sprite memory in 16 colour,
4 bit format. The blitter fills in the other
4 bits necessary to make 8 bit images while
blitting.

4

BLITTING
The blitter allows transfer of graphics from
sprite memory to the framebuffer, with arbitrary
scaling. Advanced sprite effects can be achieved
through its support for progressive per-scanline
modification of position and scaling on the
x-axis.

PAGE FLIPPING
The blitter is connected to two hardware
framebuffers. These are set up to provide
hardware page flipping, and are always organised
so that one is providing visible information and
the other is being drawn to.

FUNCTION REFERENCE

void *rt_UploadGraphic(enum rt_TargetFormats
TargetFormat, unsigned char *Data, int
SourcePixelsPerByte, int Width, int Height,
int MaskCol)

Uploads a graphic to sprite memory and
returns an opaque pointer that can be
used to identify the graphic in subsequent
graphics calls. If there is not enough
sprite memory left to store the graphic,
this function returns NULL.

All graphics are stored in sprite memory in
a 4 bit format. They are expanded to 8 bits
when they are blit using 4 additional bits
provided directly by the blitter.

5

TargetFormat defines how the two sets of
4 bits will be combined:

RT_Y — the 4 bits from the sprite are the
Y component of each pixel. The 4 bits from
the blitter are the Cb and Cr channels.
i.e.

Y Cb Cr

Value from sprite

Value from blitter

Output colour

RT_CbCr — the 4 bits from the sprite are
the Cb and Cr components of each pixel. The
4 bits from the blitter are the Y channel.
i.e.

Y Cb Cr

Value from sprite

Value from blitter

Output colour

RT_MIX — The 4 bits from the sprite and
the 4 bits from the blitter are interleaved
across all three channels as:

Y Cb Cr

Value from sprite

Value from blitter

Output colour

6

Data is a pointer to the data that should
be uploaded to sprite memory.

SourcePixelsPerByte tells the blitter how
many pixels are stored in each byte of
Data. It may be either ‘1’ or ‘2’. ‘1’
indicates that each unique byte of Data
holds a single pixel of the sprite, stored
in its low 4 bits. ‘2’ indicates that each
unique byte of Data holds two pixels of the
sprite, a left pixel in the high 4 bits and
a right pixel in the low 4 bits.

The RetroHack machine requires that
individual scanlines start on byte
boundaries. So if you want to upload a 2
pixels per byte graphic with a width that
is an odd number of pixels then you must
remember to leave an empty nibble on the
end of each scanline of data.

Width and Height inform the blitter of the
dimensions of the sprite being uploaded.

MaskCol indicates which of the 16 sprite
colours will be transparent if the sprite
is later blitted with masking.

void rt_FreeGraphic(void *graphic)
Frees the memory being used to store a
graphic and removes the graphic from sprite
memory.

7

void rt_Blit(void *graphic, int OtherNibble,
int x, int y, int ScaleX, int ScaleY, int
Skew, int ScaleChange)

Blits graphic from sprite memory to the
framebuffer. The sprite’s mask colour is
ignored.

The low 4 bits of OtherNibble are used
by the blitter to convert graphic from
the 4 bit version stored in sprite memory
to an 8 bit version suitable for the
framebuffer. How exactly these bits are
used depends on the TargetFormat passed to
rt_UploadGraphic.

x and y set the position of the sprite
on screen. These are 16:16 fixed point
numbers.

ScaleX and ScaleY set the amount of scaling
that is applied to the image. They are
16:16 fixed point numbers. Passing the
fixed point value ‘1’ for each causes the
sprite to be reproduced so that one source
pixel covers one framebuffer pixel. Passing
‘2’ for ScaleX causes the sprite to be
blitted twice as wide as normal.

The Skew value is an amount added to x
after every scanline. Passing a value of
0 will result in a normal blit operation,
passing a positive value causes the bottom
of the sprite to be skewed to the right and
passing a negative value causes the bottom
of the sprite to be skewed to the left.

8

i.e.

Normal Positive
skew

Negative
skew

The ScaleChange value is an amount added
to ScaleX after every scanline. Passing
a value of 0 will result in a normal blit
operation, passing a positive value will
cause the bottom of the sprite to be fatter
than the top of the sprite and passing a
negative value will cause the bottom of the
sprite to be thinner than the top. i.e.

Normal Positive
scale change

Negative
scale change

void rt_MaskedBlit(void *graphic, int
OtherNibble, int x, int y, int ScaleX, int
ScaleY, int Skew, int ScaleChange)

rt_MaskedBlit works in exactly the same was
as rt_Blit except that any pixels from the
sprite that match the sprite’s mask colour
are not written to the framebuffer.

9

void rt_Flip(void)
Instructs the blitter to flip the two
hardware framebuffers, causing the one that
was being displayed to be the one that is
drawn to and the one that was being drawn
to, to be displayed.

Flipping can only occur during vertical
retrace, so this function halts the CPU
until vsync.

TIMING
The blitter is clocked at 21,272,400 Hz — a
little over 21 Mhz. The RetroHack machine
produces 50 frames per second, so that gives
425,448 cycles per frame.

rt_UploadGraphic costs 60 + 8*total number of
pixels cycles.

rt_FreeGraphic costs 1 cycle.

rt_Blit costs 25 + total number of possible
framebuffer pixels calculated + 15*number of
possible scanlines calculated cycles. All sprite
clipping is done at the end of the blitting
process, so off-screen pixels cost the same as
on-screen pixels.

rt_MaskedBlit costs the same amount as an
equivalent rt_Blit of the same sprite would
have cost.

rt_Flip costs 1 cycle + however many cycles it
has to wait for the next end of frame.

10

OTHER BLITTER NOTES
The blitter is able to flip sprites both
horizontally and vertically. This is achieved by
passing negative values as the ScaleX and ScaleY
parameters during a blit.

Sprites are always scaled around their upper
left hand corner. So a sprite that is flipped
over the vertical axis will fill out to the left
of its designated screen position and a sprite
that is flipped over the horizontal axis will
fill out upwards from its designated screen
position.

Sprites that are flipped across the horizontal
axis are drawn from bottom to top. So Skew and
ScaleChange still affect drawing as it moves
from the top of the stored sprite image to the
bottom.

Sprites may not be more than 512 pixels wide or
tall.

For scaling purposes, the RetroHack machine
treats the centre of each pixel as the position
for colour sampling.

A complete output frame contains 311 horizontal
lines once the border and vertical sync periods
are factored in.

The values used by the video circuits for Y
map onto analogue values starting at 0.0625 and
incrementing by 0.05346679688 with each discrete
step. The values used for Cb and Cr start at
-0.4375 and increment by 0.21875.

11

READING INPUT

The RetroHack machine is equipped with a 62 key
memory mapped keyboard. By reading the value
of different keylines a program can query the
status of different keys. Keylines are read
using the function:

Uint8 ay_ReadKeyboard(Uint16 Line)
Returns the current value of keyline Line.

The keyboard is mapped to memory as follows:

Bit

Line 7 6 5 4 3 2 1

0 6 5 4 3 2 1 ESC

1 7 8 9 0 - = BACK
SPACE

2 y t r e w q TAB

3 u i o p [] ENTER

4 h g f d s a

5 j k l ; ‘ #

6 b v c x z \ LEFT
SHIFT

7 n m , . / RIGHT
SHIFT

8 SPACE LEFT
ALT

LEFT
CTRL

9 RIGHT
ALT

RIGHT
CTRL

10 RIGHT UP DOWN LEFT

A 0 in any bit indicates that the corresponding
key is pressed.

12

Most RetroHack machines have a standard QWERTY
keyboard, but some minor variations can exist
from country to country.

Reading the keyboard costs 1 cycle on the 21 Mhz
bus.

13

THE SOUND GENERATOR

The sound generator is an industry-standard
AY-3-8910. It provides:

• Three channel audio
• Tone and noise generators
• 16 hardware envelopes

Full details of how to program the AY are given
on the included datasheet. Only information
about how to access the AY is given below.

ACCESSING THE SOUND GENERATOR
All sound generator access is performed through
just two functions:

void ay_Write(Uint16 Addr, Uint8 Value)
Writes Value to the register at Addr.
Possible values for Addr are:

AY_REGSELECT — AY register select
AY_REGVALUE — AY register value

Uint8 ay_Read(void)
Returns the value of the currently selected
AY register.

AY MUSIC LIBRARY
The RetroHack library also includes support for
playback of PSG format music files. PSG files
store AY register changes, accurate to the
nearest display frame.

14

Three functions are provided for playing back
PSG files:

int psg_OpenFile(const char *name, int loop)
Attempts to open the file stored as name.
Returns TRUE if the file was successfully
opened, FALSE otherwise.

You can specify how you want the music to
repeat using the loop parameter. Pass TRUE
if you want the sound file to loop forever,
FALSE otherwise.

int psg_Update(void)
This function should be called once per
frame, and allows the PSG player to update
the music output.

It returns TRUE if the sound was
successfully updated, FALSE if no PSG file
is open or if it has played past the end of
a PSG file for which the user requested no
looping.

void psg_CloseFile(void)
Closes the open PSG file if one is open,
and silences the audio.

TIMING
The AY-3-8910 is clocked at 3.5454 Mhz, which
is equal to the blitter clock divided by 6. All
writes to the AY-3-8910 are synchronised with
that bus and cost 1 cycle on the 3.5454 Mhz bus.

15

ADDITIONAL ROUTINES

The RetroHack simulation library provides the
additional support routines listed below. Unless
specified otherwise, these calls cost nothing to
the simulated RetroHack machine.

INITIALISATION/DE-INITIALISATION & MISCELLANEOUS

int rt_Init(void)
Attempts to initialise the RetroHack
simulation library. This should be called
at the start of all RetroHack programs.

Returns TRUE if successful, FALSE
otherwise.

void rt_Exit(void)
Shuts down the RetroHack simulation
library. This should be called at the end
of all RetroHack programs.

END_OF_MAIN()
A helper macro required by some of the
libraries that the RetroHack simulation
library may rely on. You should include the
text ‘END_OF_MAIN()’ immediately after your
main function.

TIMING

void rt_WaitCycles(int Cycles)
Causes the CPU to wait for Cycles ticks of
the 21.2 Mhz bus.

16

void rt_WaitEvent(int Event)
Causes the CPU to wait until the event
specified in Event, which may be one of:

RT_HSYNC — Wait for the next horizontal
sync
RT_VSYNC — Wait for the next vertical sync

FIXED POINT HELPERS

ftofix(float Number)
Evaluates to the fixed point version of
Number.

itofix(int Number)
Evaluates to the fixed point version of
Number.

fixtoi(int Number)
Evaluates to the integer version of the
fixed point value stored in Number.

fixtof(int Number)
Evaluates to the floating point version of
the fixed point value stored in Number.

fixmul(int A, int B)
Evaluates to the fixed point result of A×B.

fixdiv(int A, int B)
Evaluates to the fixed point result of A÷B.

17

HOST OS INTERACTION

int rtSim_QuitWanted()
Returns TRUE if the OS running this
RetroHack simulation is requesting that
your application should quit, FALSE
otherwise.

void rtSim_SetWindowTitle(const char *name)
Communicates the title of your program to
the host OS for purposes such as window
titling.

